Copied to
clipboard

G = C7×C23.C8order 448 = 26·7

Direct product of C7 and C23.C8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C23.C8, C23.C56, C56.104D4, M5(2)⋊3C14, C28.34M4(2), (C2×C4).C56, (C2×C8).3C28, (C2×C28).2C8, (C2×C56).6C4, C8.24(C7×D4), (C22×C14).1C8, (C22×C28).9C4, C22.4(C2×C56), (C22×C4).4C28, C4.7(C7×M4(2)), (C7×M5(2))⋊11C2, C14.26(C22⋊C8), (C2×C56).309C22, C28.112(C22⋊C4), (C14×M4(2)).22C2, (C2×M4(2)).10C14, C2.7(C7×C22⋊C8), (C2×C4).67(C2×C28), (C2×C8).46(C2×C14), (C2×C14).22(C2×C8), C4.29(C7×C22⋊C4), (C2×C28).328(C2×C4), SmallGroup(448,153)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C23.C8
C1C2C4C8C2×C8C2×C56C7×M5(2) — C7×C23.C8
C1C2C22 — C7×C23.C8
C1C28C2×C56 — C7×C23.C8

Generators and relations for C7×C23.C8
 G = < a,b,c,d,e | a7=b2=c2=d2=1, e8=d, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >

Subgroups: 90 in 58 conjugacy classes, 34 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, C14, C14, C16, C2×C8, M4(2), C22×C4, C28, C28, C2×C14, C2×C14, M5(2), C2×M4(2), C56, C56, C2×C28, C2×C28, C22×C14, C23.C8, C112, C2×C56, C7×M4(2), C22×C28, C7×M5(2), C14×M4(2), C7×C23.C8
Quotients: C1, C2, C4, C22, C7, C8, C2×C4, D4, C14, C22⋊C4, C2×C8, M4(2), C28, C2×C14, C22⋊C8, C56, C2×C28, C7×D4, C23.C8, C7×C22⋊C4, C2×C56, C7×M4(2), C7×C22⋊C8, C7×C23.C8

Smallest permutation representation of C7×C23.C8
On 112 points
Generators in S112
(1 66 82 102 18 35 61)(2 67 83 103 19 36 62)(3 68 84 104 20 37 63)(4 69 85 105 21 38 64)(5 70 86 106 22 39 49)(6 71 87 107 23 40 50)(7 72 88 108 24 41 51)(8 73 89 109 25 42 52)(9 74 90 110 26 43 53)(10 75 91 111 27 44 54)(11 76 92 112 28 45 55)(12 77 93 97 29 46 56)(13 78 94 98 30 47 57)(14 79 95 99 31 48 58)(15 80 96 100 32 33 59)(16 65 81 101 17 34 60)
(2 10)(3 11)(6 14)(7 15)(19 27)(20 28)(23 31)(24 32)(33 41)(36 44)(37 45)(40 48)(50 58)(51 59)(54 62)(55 63)(67 75)(68 76)(71 79)(72 80)(83 91)(84 92)(87 95)(88 96)(99 107)(100 108)(103 111)(104 112)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)(50 58)(52 60)(54 62)(56 64)(65 73)(67 75)(69 77)(71 79)(81 89)(83 91)(85 93)(87 95)(97 105)(99 107)(101 109)(103 111)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)(81 89)(82 90)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(97 105)(98 106)(99 107)(100 108)(101 109)(102 110)(103 111)(104 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,66,82,102,18,35,61)(2,67,83,103,19,36,62)(3,68,84,104,20,37,63)(4,69,85,105,21,38,64)(5,70,86,106,22,39,49)(6,71,87,107,23,40,50)(7,72,88,108,24,41,51)(8,73,89,109,25,42,52)(9,74,90,110,26,43,53)(10,75,91,111,27,44,54)(11,76,92,112,28,45,55)(12,77,93,97,29,46,56)(13,78,94,98,30,47,57)(14,79,95,99,31,48,58)(15,80,96,100,32,33,59)(16,65,81,101,17,34,60), (2,10)(3,11)(6,14)(7,15)(19,27)(20,28)(23,31)(24,32)(33,41)(36,44)(37,45)(40,48)(50,58)(51,59)(54,62)(55,63)(67,75)(68,76)(71,79)(72,80)(83,91)(84,92)(87,95)(88,96)(99,107)(100,108)(103,111)(104,112), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(65,73)(67,75)(69,77)(71,79)(81,89)(83,91)(85,93)(87,95)(97,105)(99,107)(101,109)(103,111), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,66,82,102,18,35,61)(2,67,83,103,19,36,62)(3,68,84,104,20,37,63)(4,69,85,105,21,38,64)(5,70,86,106,22,39,49)(6,71,87,107,23,40,50)(7,72,88,108,24,41,51)(8,73,89,109,25,42,52)(9,74,90,110,26,43,53)(10,75,91,111,27,44,54)(11,76,92,112,28,45,55)(12,77,93,97,29,46,56)(13,78,94,98,30,47,57)(14,79,95,99,31,48,58)(15,80,96,100,32,33,59)(16,65,81,101,17,34,60), (2,10)(3,11)(6,14)(7,15)(19,27)(20,28)(23,31)(24,32)(33,41)(36,44)(37,45)(40,48)(50,58)(51,59)(54,62)(55,63)(67,75)(68,76)(71,79)(72,80)(83,91)(84,92)(87,95)(88,96)(99,107)(100,108)(103,111)(104,112), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(65,73)(67,75)(69,77)(71,79)(81,89)(83,91)(85,93)(87,95)(97,105)(99,107)(101,109)(103,111), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,66,82,102,18,35,61),(2,67,83,103,19,36,62),(3,68,84,104,20,37,63),(4,69,85,105,21,38,64),(5,70,86,106,22,39,49),(6,71,87,107,23,40,50),(7,72,88,108,24,41,51),(8,73,89,109,25,42,52),(9,74,90,110,26,43,53),(10,75,91,111,27,44,54),(11,76,92,112,28,45,55),(12,77,93,97,29,46,56),(13,78,94,98,30,47,57),(14,79,95,99,31,48,58),(15,80,96,100,32,33,59),(16,65,81,101,17,34,60)], [(2,10),(3,11),(6,14),(7,15),(19,27),(20,28),(23,31),(24,32),(33,41),(36,44),(37,45),(40,48),(50,58),(51,59),(54,62),(55,63),(67,75),(68,76),(71,79),(72,80),(83,91),(84,92),(87,95),(88,96),(99,107),(100,108),(103,111),(104,112)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48),(50,58),(52,60),(54,62),(56,64),(65,73),(67,75),(69,77),(71,79),(81,89),(83,91),(85,93),(87,95),(97,105),(99,107),(101,109),(103,111)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80),(81,89),(82,90),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(97,105),(98,106),(99,107),(100,108),(101,109),(102,110),(103,111),(104,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)]])

154 conjugacy classes

class 1 2A2B2C4A4B4C4D7A···7F8A8B8C8D8E8F14A···14F14G···14L14M···14R16A···16H28A···28L28M···28R28S···28X56A···56X56Y···56AJ112A···112AV
order122244447···788888814···1414···1414···1416···1628···2828···2828···2856···5656···56112···112
size112411241···12222441···12···24···44···41···12···24···42···24···44···4

154 irreducible representations

dim11111111111111222244
type++++
imageC1C2C2C4C4C7C8C8C14C14C28C28C56C56D4M4(2)C7×D4C7×M4(2)C23.C8C7×C23.C8
kernelC7×C23.C8C7×M5(2)C14×M4(2)C2×C56C22×C28C23.C8C2×C28C22×C14M5(2)C2×M4(2)C2×C8C22×C4C2×C4C23C56C28C8C4C7C1
# reps1212264412612122424221212212

Matrix representation of C7×C23.C8 in GL4(𝔽113) generated by

106000
010600
001060
000106
,
1000
011200
0010
30098112
,
1000
0100
001120
301000112
,
112000
011200
001120
000112
,
0010
3010098111
0100
95775613
G:=sub<GL(4,GF(113))| [106,0,0,0,0,106,0,0,0,0,106,0,0,0,0,106],[1,0,0,30,0,112,0,0,0,0,1,98,0,0,0,112],[1,0,0,30,0,1,0,100,0,0,112,0,0,0,0,112],[112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[0,30,0,95,0,100,1,77,1,98,0,56,0,111,0,13] >;

C7×C23.C8 in GAP, Magma, Sage, TeX

C_7\times C_2^3.C_8
% in TeX

G:=Group("C7xC2^3.C8");
// GroupNames label

G:=SmallGroup(448,153);
// by ID

G=gap.SmallGroup(448,153);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,7059,4911,102,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^2=d^2=1,e^8=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽